Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Auger relaxation processes in semiconductor nanocrystals and quantum wells

Identifieur interne : 001C39 ( Main/Exploration ); précédent : 001C38; suivant : 001C40

Auger relaxation processes in semiconductor nanocrystals and quantum wells

Auteurs : V. A. Kharchenko [États-Unis] ; M. Rosen [États-Unis]

Source :

RBID : ISTEX:0BB12DC27290D9D3D76DD8B268AA7972A3F5C616

English descriptors

Abstract

Abstract: Auger recombination rates in mesoscopic semiconductor structures have been studied as a function of energy band parameters and heterostructure size. It is shown that nonthreshold Auger processes stimulated by the presence of heteroboundaries become the dominant nonradiative recombination channel in nanometer size semiconductor structures. The size dependence of luminescence quantum yields in nanostructures and microcrystals are discussed. Auger-like collisions of electrons and heavy holes are shown to serve as “accelerators” of thermalization processes in semiconductor quantum dots.

Url:
DOI: 10.1016/0022-2313(96)00052-X


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Auger relaxation processes in semiconductor nanocrystals and quantum wells</title>
<author>
<name sortKey="Kharchenko, V A" sort="Kharchenko, V A" uniqKey="Kharchenko V" first="V. A." last="Kharchenko">V. A. Kharchenko</name>
</author>
<author>
<name sortKey="Rosen, M" sort="Rosen, M" uniqKey="Rosen M" first="M." last="Rosen">M. Rosen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0BB12DC27290D9D3D76DD8B268AA7972A3F5C616</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1016/0022-2313(96)00052-X</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-90ZM92K0-9/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001345</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001345</idno>
<idno type="wicri:Area/Istex/Curation">001345</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A18</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A18</idno>
<idno type="wicri:doubleKey">0022-2313:1996:Kharchenko V:auger:relaxation:processes</idno>
<idno type="wicri:Area/Main/Merge">001D07</idno>
<idno type="wicri:Area/Main/Curation">001C39</idno>
<idno type="wicri:Area/Main/Exploration">001C39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Auger relaxation processes in semiconductor nanocrystals and quantum wells</title>
<author>
<name sortKey="Kharchenko, V A" sort="Kharchenko, V A" uniqKey="Kharchenko V" first="V. A." last="Kharchenko">V. A. Kharchenko</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosen, M" sort="Rosen, M" uniqKey="Rosen M" first="M." last="Rosen">M. Rosen</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beam Theory Section, Naval Research Laboratory, Washington, DC 20375</wicri:regionArea>
<placeName>
<region type="state">District de Columbia</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Luminescence</title>
<title level="j" type="abbrev">LUMIN</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996">1996</date>
<biblScope unit="volume">70</biblScope>
<biblScope unit="issue">1–6</biblScope>
<biblScope unit="page" from="158">158</biblScope>
<biblScope unit="page" to="169">169</biblScope>
</imprint>
<idno type="ISSN">0022-2313</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular momentum</term>
<term>Atomic systems</term>
<term>Auger</term>
<term>Auger electron</term>
<term>Auger process</term>
<term>Auger recombination</term>
<term>Auger recombination rate</term>
<term>Auger recombination rates</term>
<term>Auger thermalization rate</term>
<term>Auger transition rate</term>
<term>Bloch functions</term>
<term>Bulk material</term>
<term>Conduction</term>
<term>Conduction band</term>
<term>Coulomb</term>
<term>Coulomb interaction</term>
<term>Coulomb matrix element</term>
<term>Electron wave function</term>
<term>Final momentum</term>
<term>Final state</term>
<term>Final states</term>
<term>Glass matrix</term>
<term>Heavy hole</term>
<term>Hole states</term>
<term>Hole wave functions</term>
<term>Kane</term>
<term>Kane model</term>
<term>Kharchenko</term>
<term>Laser</term>
<term>Luminescence</term>
<term>Luminescence quantum yields</term>
<term>Matrix</term>
<term>Microcrystal</term>
<term>Microcrystals</term>
<term>Momentum conservation</term>
<term>Nanometer</term>
<term>Nonthreshold</term>
<term>Optical recombination</term>
<term>Overlap integrals</term>
<term>Phonon</term>
<term>Phys</term>
<term>Quantum</term>
<term>Quantum dots</term>
<term>Quantum efficiency</term>
<term>Radiative</term>
<term>Radiative recombination</term>
<term>Recombination</term>
<term>Rosen</term>
<term>Semiconductor</term>
<term>Semiconductor quantum dots</term>
<term>Valence</term>
<term>Valence band</term>
<term>Wave function</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Auger recombination rates in mesoscopic semiconductor structures have been studied as a function of energy band parameters and heterostructure size. It is shown that nonthreshold Auger processes stimulated by the presence of heteroboundaries become the dominant nonradiative recombination channel in nanometer size semiconductor structures. The size dependence of luminescence quantum yields in nanostructures and microcrystals are discussed. Auger-like collisions of electrons and heavy holes are shown to serve as “accelerators” of thermalization processes in semiconductor quantum dots.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>District de Columbia</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Kharchenko, V A" sort="Kharchenko, V A" uniqKey="Kharchenko V" first="V. A." last="Kharchenko">V. A. Kharchenko</name>
</region>
<name sortKey="Rosen, M" sort="Rosen, M" uniqKey="Rosen M" first="M." last="Rosen">M. Rosen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0BB12DC27290D9D3D76DD8B268AA7972A3F5C616
   |texte=   Auger relaxation processes in semiconductor nanocrystals and quantum wells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021